You're reading an old version of this documentation.
For the latest stable release version, please have a look at vTEST.

Assignments

Assignments

There are multiple assignment operators:

Symbol

Description

:=

Standard assignment, equivalent to <= in VHDL/Verilog.

\=

Equivalent to := in VHDL and = in Verilog. The value is updated instantly in-place.

<>

Automatic connection between 2 signals or two bundles of the same type. Direction is inferred by using signal direction (in/out). (Similar behavior to :=)

When muxing (for instance using when, see When/Switch/Mux.), the last valid standard assignment wins. Else, assigning twice to the same assignee results in an assignment overlap (see Assignment overlap).

val a, b, c = UInt(4 bits)
a := 0
b := a
//a := 1 // assignment overlap with a := 0
c := a

var x = UInt(4 bits)
val y, z = UInt(4 bits)
x := 0
y := x      // y read x with the value 0
x \= x + 1
z := x      // z read x with the value 1

// Automatic connection between two UART interfaces.
uartCtrl.io.uart <> io.uart

It also supports Bundle assignment. Bundle multiple signals together using () to assign and assign to

val a, b, c = UInt(4 bits)
val d       = UInt(12 bits)
val e       = Bits(10 bits)
val f       = SInt(2  bits)
val g       = Bits()

(a, b, c) := B(0, 12 bits)
(a, b, c) := d.asBits
(a, b, c) := (e, f).asBits
g         := (a, b, c, e, f).asBits

It is important to understand that in SpinalHDL, the nature of a signal (combinational/sequential) is defined in its declaration, not by the way it is assigned. All datatype instances will define a combinational signal, while a datatype instance wrapped with Reg(...) will define a sequential (registered) signal.

val a = UInt(4 bits) // Define a combinational signal
val b = Reg(UInt(4 bits)) // Define a registered signal
val c = Reg(UInt(4 bits)) init(0) // Define a registered signal which is set to 0 when a reset occurs

Width checking

SpinalHDL checks that the bit count of the left side and the right side of an assignment matches. There are multiple ways to adapt the width of a given BitVector (Bits, UInt, SInt):

Resizing techniques

Description

x := y.resized

Assign x with a resized copy of y, resize value is automatically inferred to match x

x := y.resize(newWidth)

Assign x with a resized copy of y, size is manually calculated

There is one case where Spinal automatically resizes a value:

Assignment

Problem

SpinalHDL action

myUIntOf_8bit := U(3)

U(3) creates an UInt of 2 bits, which doesn’t match the left side (8 bits)

Because U(3) is a “weak” bit count inferred signal, SpinalHDL resizes it automatically

Combinatorial loops

SpinalHDL checks that there are no combinatorial loops (latches) in your design. If one is detected, it raises an error and SpinalHDL will print the path of the loop.